Arterial blood gas analysis: Basic concept & Clinical correlation

Presented by-

Prof. Dr. Marufa Akhter

Professor & Head

Department of Biochemistry

ASWMC

Learning objectives

At the end of the session we will able to know-

- Basic concept of Arterial blood gas analysis
- Acid-base homeostasis
- Role of buffers in maintenance of acid-base homeostasis
- Acid-base parameters in arterial blood gas analysis
- Acid-base disorders
- Diagnostic approach to acid-base disorders

Arterial blood gas (ABG) analysis

Arterial blood gas (ABG) analysis:

An arterial blood gas (ABG) analysis measures the amounts of arterial gases-

- Oxygen (O₂)
- Carbon dioxide (CO₂).

Arterial blood gas (ABG) analysis... cont.

An ABG test measures the arterial blood gas tension values of –

- Partial pressure of oxygen (PaO₂)
- Partial pressure of carbon dioxide (PaCO₂)
- Blood pH
- Oxygen saturation (SaO₂)
- Serum HCO₃⁻

Arterial blood gas (ABG) analysis... cont. **Procedure of ABG analysis:**

After a pulse is found, a blood sample is taken from the artery

Arterial blood gas (ABG) analysis... cont.

Procedure of ABG analysis:

Collection of blood sample for ABG

Arterial blood gas (ABG) analysis... cont.

Blood gas analyzer

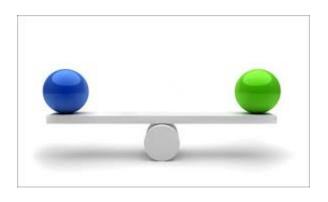
Acid-base homeostasis

Acid-base homeostasis:

To achieve homeostasis precise H⁺ regulation is essential.

As almost all the enzyme systems in the body are influenced by H+ concentration.

Therefore, changes in

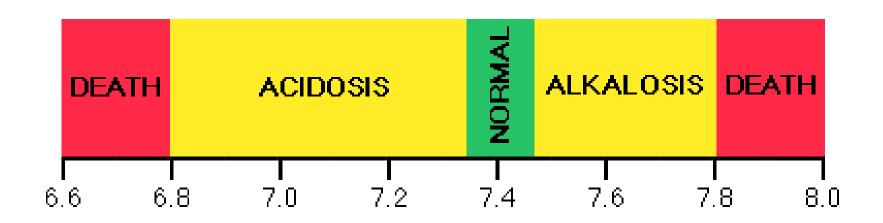

H⁺ concentration

alter virtually

all cells and body functions.

So, there must be a balance between the intake or production of H⁺ and the net removal of H⁺ from the body.

Besides the kidneys, there are multiple acid-base buffering mechanisms the blood, cells and lungs that are essential in maintaining normal H+ concentrations in both ECF & ICF.



pH scale

pH scale...cont.

Normal blood pH level

Regulation of Acid –Base Homeotasis

During metabolism, body produces metabolic acids and metabolic bases.

There are two types of metabolic acids –

1. Volatile acids: CO₂ or H₂CO₃ - Route of excretion: Lungs

2. Nonvolatile acids: HCl, H₂SO₄, H₃PO₄, lactic acid, ketoacid

Route of excretion: Kidney

Metabolic acid or **base** production depends on following factors –

- 1. Insulin status
- 2. Blood flow to tissues
- 3. Oxygen supply to tissues
- **4.** Dietary habit:

Protein generates more acid Fruits & vegetables generate more base.

Three primary systems regulate the pH of the body fluids to prevent acidosis and alkalosis.

1. Body fluid buffer system (1st line of defense, within seconds)

2. Respiratory mechanism (2nd line of defense, within few minutes)

3. Renal mechanism (3rd line of defense, hour to several days)

Role of buffer system in maintenance of p^H

Role of buffer in maintenance of p^H... cont.

Buffer systems:

- 1. Bicarbonate buffer system
- 2. Phosphate buffer system
- 3. Protein buffer system

1. Bicarbonate buffer system

Mechanism of action

1. Bicarbonate buffer system: Mechanism of action

In acidosis,

HCI + NaHCO₃
$$\rightarrow$$
 H₂CO₃ + NaCl (strong acid) (weak acid)

In alkalosis,

NaOH +
$$H_2CO_3 \rightarrow NaHCO_3 + H_2O$$

(strong base) (weak base)

Bicarbonate buffer... M/A

Since the dissociation of H₂CO₃ into H⁺ ion & HCO₃ ion is very poor, the change in pH of the body fluid is prevented.

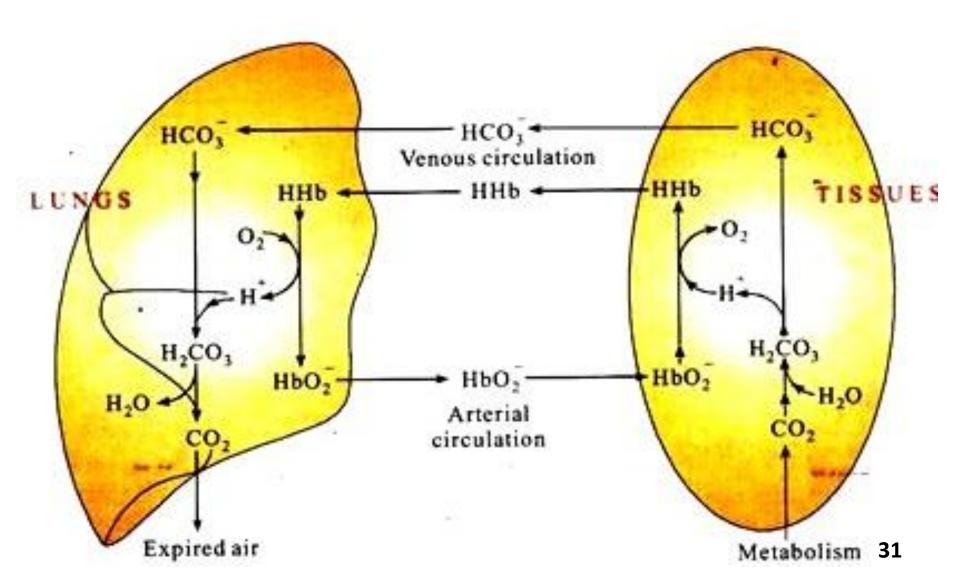
2. Phosphate buffer system

Mechanism of action

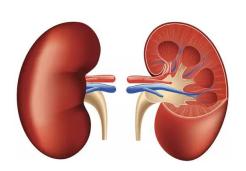
2. Phosphate buffer system Mechanism of action

In acidosis,

HCl +
$$Na_2HPO_4 \rightarrow NaH_2PO_4 + NaCl$$
 (strong acid) (weak acid)


In alkalosis

NaOH + NaH₂PO₄
$$\rightarrow$$
 H₂O + Na₂HPO₄ (strong base) (weak base)

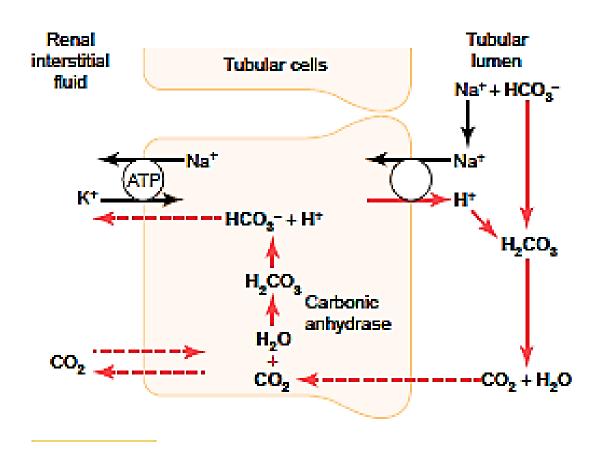

3. Protein buffer system

Mechanism of action

Hemoglobin buffer system

Role of kidney in acid-base balance

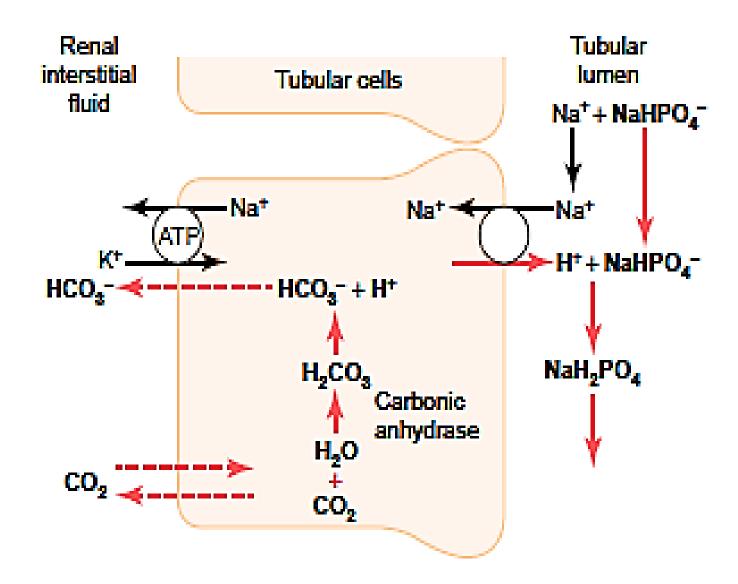
Role of kidney in acid-base balance:


Kidney controls acid-base balance by excreting either acidic urine in acidosis & alkaline urine in alkalosis.

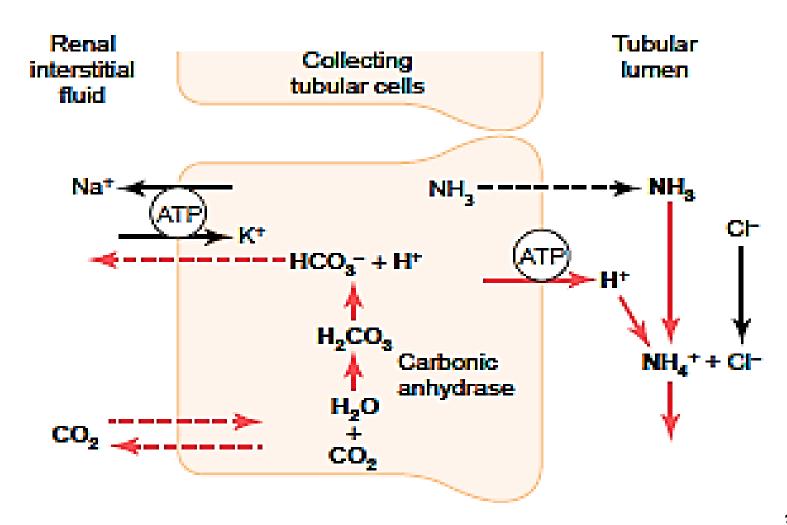
Normally, urinary pH is acidic.

1. Bicarbonate buffer mechanism

(Reabsorption of filtered bicarbonate)


Mechanism of action of HCO₃⁻ buffer: (H⁺ ion secretion achieves HCO₃⁻ reabsorption)

2. Phosphate buffer (HPO₄⁻/ H₂PO₄) mechanism


(Generation of new HCO₃- & excretion of nonvolatile acids)

Mechanism of action of phosphate buffer:

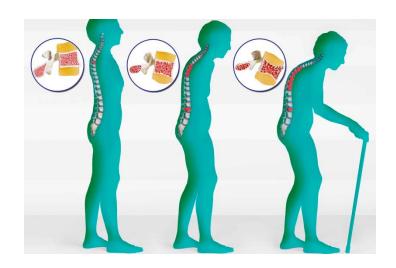
3. Ammonia buffer (NH₃/NH₄) mechanism:

Buffering of secreted H⁺ ion by ammonia buffer:

Bone buffer

Bone buffer... cont.

Bone buffer is the alkaline calcium-phosphate salt of bone deposited in the form of hydroxyapatite crystal (HAC).


Bone buffer... cont.

In chronic renal failure,
bone buffer participates
in buffering activity
to maintain body pH but
at the cost of bone demineralization.

Bone buffer... cont.

Patients suffer from Osteoporosis.

Normal acid-base parameters of blood

Normal acid – base parameters of blood

Parameters	Arterial blood	Venous blood
рН	7.4	7.38
PCO_2	40 mmHg	46 mmHg
PO_2	95 mmHg	40 mmHg
HCO ₃ -	24 mmHg	26 mmHg
Base excess	± 2mmol/L	± 2mmol/L
Anion gap	8-16 meq/L	8-16 meq/L
O ₂ saturation	> 95%	60-80%

Base excess

 $[HCO_3^-]p - [HCO_3^-] std$

Base excess

It is the difference between the actual HCO₃⁻ concentration of an individual & the standard HCO₃⁻ concentration.

Base excess = $[HCO_3^-]p - [HCO_3^-]$ std

Base excess...cont.

Types of base excess:

- 1. Positive base excesshigh plasma HCO₃-concentration.
- 2. Negative base excesslow plasma HCO₃-concentration.

Normal value: - 2 mmol/L to + 2 mmol/L

Base excess...cont.

Positive base excess:

e.g. Metabolic alkalosis
Respiratory acidosis

Negative base excess:

e.g. Metabolic acidosis
Respiratory alkalosis

Anion gap

Anion gap

The plasma anion gap is based on the principle of the 'law of electrical neutrality'.

Anion gap is quantities of anions not balanced by cations.

According to the law of electrical neutrality in plasma –

	Total cation = Total anion	
	$Na^++ K^++ UC = CI^-+ HCO_3^-+ UA$	
	$Na^{+}+ K^{+} - (CI^{-} + HCO_{3}^{-}) = UA - UC$	
So,		
Plasma anion gap	= (Na ⁺) - (Cl ⁻ + HCO ₃ ⁻)	
	= 144 – (108 + 24)	
	= 144 – 132	
	= 12mEq/L	

Plasma anion gap = 8-16 mEq/L Average = 12 mEq/L

Common unmeasured anions in plasma:

- 1. Plasma protein (mainly albumin)
- 2. Phosphate
- 3. Sulphate
- 4. Lactate
- 5. Keto acid anions
- 6. Other organic acid anions

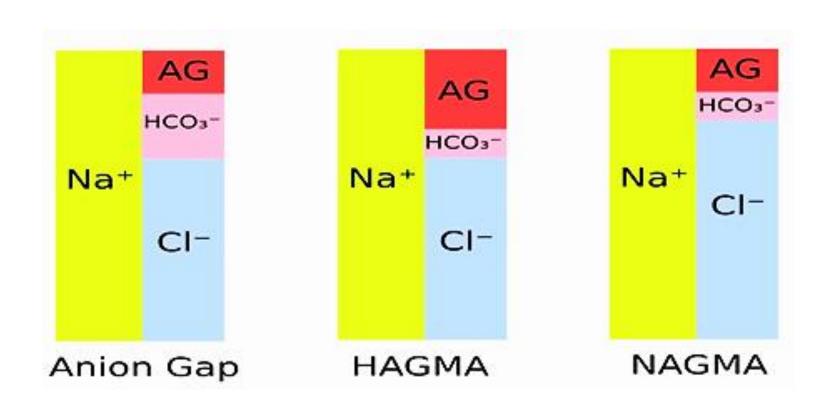
Common unmeasured cations in plasma:

- 1. Calcium
- 2. Magnesium

Anion gap decreases in -

- 1. Hypoalbuminemia
- 2. Hypercalcemia
- 3. Hypermagnesemia
- 4. Hypergamma globulinemia

Anion gap increases in-If it is more than 12 mEq/L


- 1. Renal failure
- 2. Lactic acidosis
- 3. Ketoacidosis
- 4. Intoxication

Alcohol poisoning Salicylate poisoning

5. Hyperalbuminemia

High anion gap metabolic acidosis

Plasma anion gap: Types

Normal anion gap metabolic acidosis: Hyperchlorimic metabolic acidosis

- Diarrhoea- HCO₃ loss in stool
- Renal tubular acidosis- HCO₃ loss in urine

Kidney reabsorbs Cl

Anion gap =
$$[Na^+] - [\uparrow (Cl^-) + \downarrow (HCO_3^-)]$$

= Normal

High anion gap metabolic acidosis: unmeasured anions-

- Hyperphosphatemia
- Hyperalbuminemia
- IgA producing multiple myeloma

Increased unmeasured anions:

$$[Na^+] - [\downarrow (Cl^-) + \downarrow (HCO_3^-)] = ^Anion gap$$

Acid-base disorders

Acid-base disorders... cont.

Acidosis:

It is a clinical condition in which arterial pH falls bellow 7.4 due to accumulation of acid or loss of base from the body.

Alkalosis:

It is a clinical condition in which arterial pH rises above 7.4 due to accumulation of base or loss of acid from the body.

Acid-base disorders... cont.

Normally,

The ratio of HCO_3 : $CO_2 = 20$: 1

In acidosis,

The ratio of [HCO₃/CO₂] falls bellow 20/1

Acid-base disorders... cont.

Acid-base disorders:

A. Respiratory:

Respiratory acidosis
Respiratory alkalosis

B. Metabolic:

Metabolic acidosis Metabolic alkalosis

Respiratory acidosis

Respiratory acidosis

It is the acidosis occurs due to primary hypoventilatory disorder of lungs leading to increased PCO₂ and decreased pH in plasma.

Causes:

A. Pulmonary diseases:

- 1. Asthma
- 2. Chronic obstructive pulmonary disease (COPD):
 - a. Chronic bronchitis
 - b. Emphysema
- 3. Severe pneumonia
- 4. Severe pulmonary edema
- 5. Massive pulmonary embolism
- 6. Diffuse parenchymal lung disease

Respiratory acidosis ... cont.

B. Respiratory center depression:

Sedatives

Anesthetics

Strock

Brain tumour

C. Mechanical hypoventillation

Respiratory acidosis ... cont.

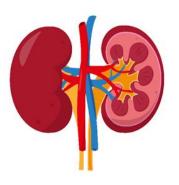
D. Neuromuscular defect:

Poliomyelitis

Guillain - Barre syndrome

Myasthenia gravis

Spinal cord injury


Respiratory acidosis... cont.

Primary biochemical change:

1 PCO₂

Renal compensation & correction:

- Complete HCO₃ reabsorption from PCT
- New generation HCO₃- in CD
- ^ Ammonia formation

Respiratory alkalosis

Respiratory alkalosis

It is the alkalosis occurs due to primary hyperventilatory disorder of lungs leading to decreased PCO₂ and increased pH in plasma.

Respiratory alkalosis...cont.

Causes:

A. CNS mediated stimulation of respiratory center:

- Neurological disease: a. Encephalitis
 b. Meningitis
- 2. Poisoning: Salicylate
- 3. Psychological: a. Hysteriab. Anxiety
- 4. Septicemia
- 5. Hepatic encephalopathy

Respiratory alkalosis...cont.

B. Tissue hypoxia mediated stimulation of respiratory center:

- 1. Congestive cardiac failure
- 2. Severe anemia
- 3. Congenital cyanotic heart disease
- 4. Pulmonary diseases:
 - a. Pneumonia
 - b. Pulmonary edema
 - c. Pulmonary embolism
 - d. Interstitial lung disease

Respiratory alkalosis...cont.

Primary biochemical change:

 $\downarrow PCO_2$

Renal compensation & correction:

- **a.** Inhibition of **HCO**₃- reabsorption from PCT
- **b.** Renal **HCO**₃⁻ excretion

Metabolic acidosis

pH < 7.35

Metabolic acidosis

It is the acidosis occurs due to primary decrease in plasma HCO₃-following gain of acid other than H₂CO₃ or loss of base.

Metabolic acidosis is characterized by -

Reduction in plasma HCO₃⁻ & Consequent rise in [H⁺]

The PCO₂ decreased secondarily by hyperventilation.

Four main causes of metabolic acidosis-

- 1. Lactic acidosis
- 2. Renal tubular acidosis
- 3. Ketoacidosis
- 4. Diarrhoea

Aetiological types of metabolic acidosis: A. Normal anion gap metabolic acidosis:

1. Loss of base through GIT-

Diarrhea

Intestinal fistula

Pancreatic fistula

Biliary fistula

lleostomy

Colostomy

- 2. Renal tubular acidosis
- 3. Hypoaldosteronism
- 4. Aldosterone antagonist abuse

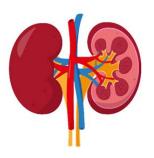
B. High anion gap metabolic acidosis:

- 1. Renal failure
- 2. Lactic acidosis
- 3. Ketoacidosis
- 4. Intoxication:

Alcohol, salicylate

Primary defect: ↓ HCO₃ with normal PCO₂

Compensation: ↓ PCO₂ by hyperventilation Correction:


It is corrected by kidney by the following mechanism-

a. Raise of HCO₃- by -

Conservation of HCO₃

Generation of new HCO₃⁻

b. Excretion of acidic urine.

Metabolic alkalosis

pH >7.45

Metabolic alkalosis

It is the alkalosis occurs due to primary increase in plasma HCO₃- concentration following gain of base or loss of acid other than H₂CO₃.

Metabolic alkalosis...cont.

Causes:

A. Loss of acid from GIT:

Persistent vomiting

Excessive nasogastric suction

B. Loss of acid through renal route:

Diuretic abuse

Hyperaldosteronism

Cushing syndrome

C. Exogenous alkali administration

Metabolic alkalosis...cont.

Primary biochemical change:

↑ HCO₃ with normal PCO₂

$$HCO_3^-$$
: $PCO_2 \rightarrow \uparrow$

Metabolic alkalosis...cont.

Compensation:

↑ PCO₂ by hypoventilation

Correction:

↑ **HCO₃** excretion

↓ HCO₃ reabsorption in PCT

Characteristics of primary acid-base balance

Characteristics of primary acid- base balance:

	рН	H⁺	PCO ₂	HCO ₃ -
Normal	7.4	40 meq/L	40 mmHg	24 meq/L
Respiratory acidosis	\	↑	↑ ↑	↑
Respiratory alkalosis	↑	\	1	\
Metabolic acidosis	\	↑	\	$\uparrow \downarrow$
Metabolic alkalosis	↑	\	↑	个个

Salient feature of simple acid-base disorder:

Types	Primary defect	Unaffected component	HCO ₃ /PCO ₂ ratio	рН
Respiratory acidosis	↑PCO ₂	HCO ₃ -	\	\
Respiratory alkalosis	↓PCO ₂	HCO ₃ -	↑	↑
Metabolic acidosis	↑HCO³-	PCO ₂	\	\
Metabolic alkalosis	个HCO	PCO ₂	↑	↑

Salient feature of simple acid-base disorder...cont.

Types	Compensation	Mechanism of compensation
Respiratory acidosis	↑HCO ₃ -	Renal HCO ₃ - generation
Respiratory alkalosis	↑HCO³-	Renal HCO ₃ - excretion
Metabolic acidosis	↓PCO ₂	Hyperventilation
Metabolic alkalosis	↑PCO ₂	Hypoventilation

Compensation of acid-base disorders

Compensation of acid-base disorders... cont.

Compensation of simple acid - base disorders follow the 'same direction rule' –

'Up yields up and down yields down'

Compensation of metabolic acidosis:

 To counteract the acidemia of metabolic acidosis, body system creates the scenario of respiratory alkalosis by decreasing PCO₂

$$pH \propto \frac{-HCO_3^{-} \downarrow}{PCO_2} Initial \qquad pH \propto \frac{-HCO_3^{-} \downarrow}{PCO_2} Compensated$$

Compensation of metabolic acidosis

2. To counteract the alkalemia of metabolic alkalosis, body system creates the scenario of respiratory alkalosis by increasing PCO₂

$$pH \propto \frac{-HCO_3^{-} \uparrow}{PCO_2} Initial \qquad pH \propto \frac{-HCO_3^{-} \uparrow}{PCO_2 \uparrow} Compensated$$

Compensation of respiratory acidosis

3. To counteract the acidemia of respiratory acidosis, body system the scenario of respiratory alkalosis by increasing bicarbonate

$$pH \propto \frac{-\frac{HCO_3^{-1}}{PCO_2} \uparrow Initial}{pH \propto \frac{-\frac{HCO_3^{-1}}{PCO_2} \uparrow}{PCO_2} Compensated$$

Compensation of metabolic alkalosis

4. To counteract the alkalemia of respiratory alkalosis, body system creates the scenario of respiratory acidosis by decreasing bicarbonate

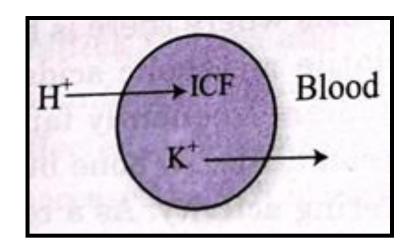
$$pH \propto \frac{HCO_3^-}{PCO_2^- \downarrow} Initial \qquad pH \propto \frac{HCO_3^-}{PCO_2^- \downarrow} Compensated$$

Acid-base disorder & serum potassium

Acid-base disorders cause

potassium

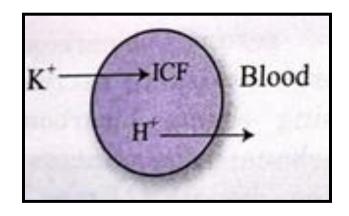
to shift into and out of cells,


a phenomenon called

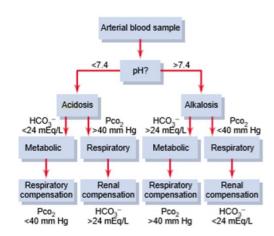
"internal potassium balance".

The plasma potassium concentration will rise by 0.6 mEq/L for every 0.1 unit reduction of the extracellular pH.

In acidosis,

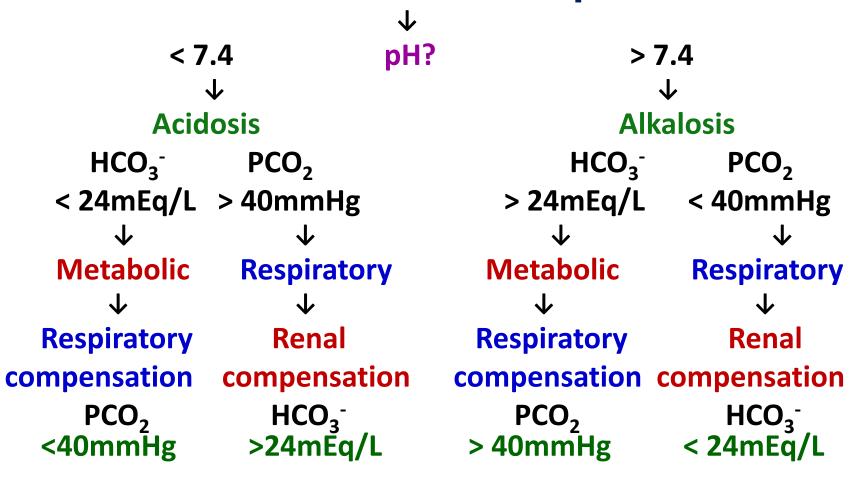

hyperkalemia occurs
because of shifts of potassium
from the intracellular
to the extracellular compartment
to maintain electrical neutrality.

Efflux of potassium out of the cell in acidosis leading to hyperkalaemia


In alkalosis,

the opposite effect occurs, often leading to hypokalemia.

Influx of potassium into the cell in alkalosis leading to hypokalemia


Diagnostic approach to Acid-Base disorders

Diagnostic approach to acid-base disorders:

- 1. Clinical evaluation
- 2. Laboratory investigations
- 3. Assessment of acid-base parameters:
 - pH
 - $-PCO_2$
 - $-PO_2$
 - HCO₃-
 - Base excess
 - Anion gap
 - Oxygen saturation
- 4. Assessment of compensatory response if simple acid-base disorder.

Arterial blood sample

Laboratory report based data interpretation

Problem-1:

$$pH = 7.3$$
, $HCO_3^- = 16 \text{ mmol/L}$, $PCO_2 = 30 \text{ mmHg}$

pH =
$$7.3 \propto \frac{\text{HCO}_3^- (16)}{\text{PCO}_2 (30)}$$

pH = 7.3, $HCO_3^- = 16 \text{ mmol/L}$, $PCO_2 = 30 \text{ mmHg}$

Solution:

- 1. pH is decreased → Acidosis
- 2. HCO_3^- is decreased \longrightarrow Metabolic acidosis
- 3. PCO_2 is decreased \longrightarrow not respiratory acidosis
- 4. Compensation:

Diagnosis: Compensated metabolic acidosis

Problem-2:

$$pH = 7.5$$
, $HCO_3^- = 40 \text{ mmol/L}$, $PCO_2 = 50 \text{ mmHg}$

pH =
$$7.5 \propto \frac{\text{HCO}_3^- (40)}{\text{PCO}_2 (50)}$$

pH = 7.5, HCO₃⁻ = 40 mmol/L, PCO₂ = 50 mmHgSolution:

- 1. pH is increased → Alkalosis
- 2. HCO_3^- is increased \longrightarrow Metabolic alkalosis
- 3. PCO_2 is increased \longrightarrow not respiratory
- 4. Compensation:

 As PCO₂ is increased alkalosis compensated metabolic alkalosis

Diagnosis: Compensated metabolic alkalosis

Problem-3:

$$pH = 7.3$$
, $HCO_3^- = 35 \text{ mmol/L}$, $PCO_2 = 70 \text{ mmHg}$

pH =
$$7.3 \propto \frac{\text{HCO}_3^-(35)}{\text{PCO}_2(70)}$$

pH = 7.3, HCO₃⁻ = 35 mmol/L, PCO₂ = 70 mmHgSolution:

- 1. pH is decreased —→ Acidosis
- 2. HCO_3^- is increased \longrightarrow not metabolic acidosis
- 3. PCO_2 is decreased \longrightarrow respiratory acidosis
- 3. Compensation:

As HCO₃⁻ is increased compensated respiratory acidosis

Diagnosis: Compensated respiratory acidosis

Problem-4:

$$pH = 7.55$$
, $HCO_3^- = 16 \text{ mmol/L}$, $PCO_2 = 22 \text{ mmHg}$

pH =
$$7.55 \propto \frac{HCO_3^- (16)}{PCO_2 (22)}$$

pH = 7.55, HCO₃⁻ = 16 mmol/L, PCO₂ = 22 mmHgSolution:

- 1. pH is increased → Alkalosis
- 2. HCO_3^- is decreased \longrightarrow not metabolic alkalosis
- 3. PCO_2 is decreased \longrightarrow respiratory alkalosis
- 4. Compensation:

As HCO_3^- is decreased $\xrightarrow{\text{compensated}}$ respiratory alkalosis

Diagnosis: Compensated respiratory alkalosis

Problem-5:

$$pH = 7.2$$
, $HCO_3^- = 26 \text{ mmol/L}$, $PCO_2 = 52 \text{ mmHg}$

pH =
$$7.55 \propto \frac{HCO_3^-(26)}{PCO_2(52)}$$

pH = 7.2, HCO₃⁻ = 26 mmol/L, PCO₂ = 52 mmHg Solution:

- 1. pH is decreased → Acidosis
- 2. HCO₃⁻ is near normal ——— Uncompensated disorder
- 3. PCO_2 is high \longrightarrow Respiratory acidosis
- 3. Compensation:

Not compensated

Diagnosis: Acute (uncompensated) respiratory acidosis

Problem-6:

$$pH = 7.7$$
, $HCO_3^- = 21 \text{ mmol/L}$, $PCO_2 = 27 \text{ mmHg}$

pH =
$$7.55 \propto \frac{\text{HCO}_3^-(21)}{\text{PCO}_2(27)}$$

pH = 7.7, HCO₃⁻ = 21 mmol/L, PCO₂ = 27 mmHgSolution:

- 1. pH is increased —→ Alkalosis
- 2. HCO_3^- is near normal \longrightarrow uncompensated disorder
- 4. Compensation:

Not compensated

Diagnosis: Acute (uncompensated) respiratory alkalosis

Problem-7:

$$pH = 6.9$$
, $HCO_3^- = 12 \text{ mmol/L}$, $PCO_2 = 55 \text{ mmHg}$

pH =
$$7.55 \propto \frac{\text{HCO}_3^- (12)}{\text{PCO}_2 (55)}$$

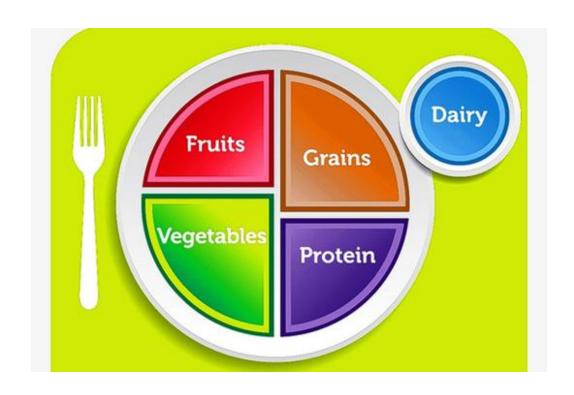
pH = 6.9, HCO₃⁻ = 12 mmol/L, PCO₂ = 55 mmHgSolution:

- 1. pH is decreased → Acidosis
- 2. HCO_3^- is decreased \longrightarrow Metabolic acidosis
- 3. PCO_2 is increased \longrightarrow Respiratory acidosis
- 4. Compensation:

Not compensated

Diagnosis: Metabolic acidosis with respiratory acidosis

Take home message



Take home message

Take home message

Thank You